
S. S. Nayak et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 7, (Part - 2) July 2015, pp.15-22

 www.ijera.com 15 | P a g e

Design and Structuring of a Multiprocessor System based on

Transputers

S. S. Nayak*, R. K. Mishra**, M. N. Murty***, B. Padhy****
*Department of Physics, JITM, Centurion University, Paralakhemundi, Odisha, India,

**Department of Electronic Science, Berhampur University, Berhampur, Odisha, India

***Department of Physics, NIST, Berhampur, Odisha, India, E-mail: mnarayanamurty@rediffmail.com

****Research Student, Department of Electronic Science, Berhampur University, Berhampur, Odisha, India,

ABSTRACT
In this paper the Authors present the design of a high performance transputer based fault-tolerant multiprocessor

system for critical applications such as aircraft control, nuclear power station control, satellite applications etc.

Fault-tolerant building blocks designed with potential for real time processing. The systematic architecture,

regularity and recursiveness enables the system to be more fault-tolerant. Real-time applications have to

function correctly even in the presence of faults. Link failure of the network is deeply analysed with reliability

analysis.

Keywords: Fault-tolerance, Real-time System, Multitransputer System, Parallel Processing, Reliability

Analysis.

I. INTRODUCTION
This design provides transparent protection from

permanent module failures based on multiple modular

redundancy. Though, transporter is a link based

processor, it is easy to design a parallel machine that

encapsulate acceptance testing, fault masking,

reconfiguring the network. The authors presented a

new modular based fault-tolerance technique

comprising a single module comprising of four IMS

T800 transputer for real fault tolerant mechanism

interconnecting the four bidirectional links of each

module. One line of each module dedicated to link

adaptor for I/O to peripheral instruments. The

reference becomes crazy due to permanent faults,

transient faults, software faults, operation errors etc.

Hardware faults due to memory crazy and short

circuiting etc.[1],[2] and errors due to information

failure[2]. Faults due to severe environmental

conditions includes the transient faults[1]. To

challenge the above fault scenario, multilink

processor[18] is preferred while designing the

network.

The design aims at observing

1. Tolerance against intentionally injected

faults

2. Tolerance against faulty modules or

identical processor in the network of

processors.

Hence, the present transputing systems

provides dynamic fault recovery applications in

MIMD architecture[3]. The multiple link mechanism

is adopted for better group communication[4] in the

network.

II. TRANSPUTER OVERVIEW
The IMS T800 transputer is a 32 bit CMOS

microcomputer with a 64 bit floating point unit and

graphics support. It has 4 kbytes on-chip RAM for

high speed processing, a configurable memory

interface and four standard INMOS communication

links. The instruction set achieves efficient

implementation of high level languages and provides

direct support for the Occam model of concurrency

when using either a single transputer or a network.

Procedure calls, process switching and typical

interrupt latency are sub-microsecond. For

convenience of description, the IMS T800 operation

is split into the basic blocks shown in Fig. 1.

The processor speed of a device can be pin-

selected in stages from 17.5 MHz up to the maximum

allowed for the part. A device running at 30 MHz

achieves an instruction throughput of 30 MIPS peak

and 15 MIPS sustained. The extended temperature

version of the device complies with MIL-STD-883C.

The IMS T800 provides high performance

arithmetic and floating point operations. The 64 bit

floating point unit provides single and double length

operation to the ANSI-IEEE 754-1985 standard for

floating point arithmetic. It is able to perform

floating point operations concurrently with the

processor, sustaining a rate of 2.2 Mflops at a

processor speed of 20 MHz and 3, 3 Mflps at 30

MHz.

RESEARCH ARTICLE OPEN ACCESS

S. S. Nayak et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 7, (Part - 2) July 2015, pp.15-22

 www.ijera.com 16 | P a g e

Figure-1 IMS T800

Cyclic Redundancy Checking (CRC) instructions

are available for use on arbitrary length serial data

streams, to provide error detection where data

integrity is critical. Another feature of the IMS T800,

useful for pattern recognition, is the facility to count

bits set in a word.

The IMS T800 can directly access a linear

address space of 4 Gbytes. The 32 bit wide memory

interface uses multiplexed data and address lines and

provides a data rate of up to 4 bytes every 100

nanoseconds (40 Mbytes/sec) for a 30 MHz device.

A configurable memory controller provides all timing

control and DRAM refresh signals for a wide variety

of mixed memory systems.

System Services include processor reset and

bootstrap control, together with facilities for error

analysis. Error signals may be daisy-chained in

multi-transputer systems.

The standard INMOS communication links allow

networks of transputer family products to be

constructed by direct point to point connections with

no external logic. The IMS T800 links support the

standard operating speed of 10 Mbits/sec, but also

operate at 5 or 20 MBits/sec. Each link can transfer

data bi-directionally at up to 2.35 Mbytes/sec. The

transputer is designed to implement the native

language Occam but also efficiently supports other

languages such as C, Pascal and Fortran of parallel

„C‟.

III. SYSTEM DESIGN
The architecture is designed is regular and

recursive and the resultant system yields low cost for

fault tolerance due to avoidance of roll-back accuracy

and small scale of synchronizations.

Figure-2 Single Module

S. S. Nayak et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 7, (Part - 2) July 2015, pp.15-22

 www.ijera.com 17 | P a g e

Figure-3: Hardware Architecture [4 Modules]

Each module consisting of four transputer nodes

with their own private memory four bidirectional

communication links and a copy of operating system.

The hardware architecture is shown in figure in the

form of grid connection.

a) Operation during multiple link failure

Multiple link failure may result in a network

partition. Processor failure is assumed when all the

internal links appear to have failed. Consider first the

simple one of processors two links filing as in figure.

The „0‟ node scatters the data packet to the available

working links, only one node receives it and ACKs

are then scattered by the recipient in all the working

internal links in response to the packet.

Figure-4 Node „0‟ scatters PDU. Node „2‟ receives

PDU.

S. S. Nayak et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 7, (Part - 2) July 2015, pp.15-22

 www.ijera.com 18 | P a g e

Figure-5 Node „1‟ and Node „3‟ observe and claim it.

Single Module out of 4 Modules

Figure-6 Lost claimers ACK the PDU received.

Figure-7 Direct ACKs are returned to the Originator.

Figure-8 Node „1‟ scatter PDU and Node „2‟ receives

and ACKs it.

(a)

(b)

S. S. Nayak et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 7, (Part - 2) July 2015, pp.15-22

 www.ijera.com 19 | P a g e

 (c)

Figure-9(a, b & c): Node 1 receives the PDU and

ACKs the reception of the PDU.

Figure-10: Node ‘0’ scatters PDU and Node ‘1’

and ‘2’ receives and ACKs it.

 (a)

(b)

Figure-11(a & b): Node ‘2’ and ‘2’ observe and

claim it.

Figure-12: Direct ACK can reach the originator.

The other two links of the recipient are working

other two nodes 2 and 1 observe the reception

through the ACKs. The recipient sends the data

packet to the other two nodes in response to the

reception of the lost claim packets. The ACKs are

returned to the originator (direct ACK) are also

directed to the recipient (Node „0‟). When ACKs are

scattered form the lost claimer the ACK distributed to

the originator is 1
st
 sent to the Node „0‟ that provided

the claimed packet. It is then forwarded by the peer

who should have a working link to reach the

originator, provided that no further link failure

occurred so far.

If the link between the two claimers is working,

the observed ACK from either should be received by

the other, by now both claimers should have gathered

the set of packets i.e. one message packet and two

S. S. Nayak et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 7, (Part - 2) July 2015, pp.15-22

 www.ijera.com 20 | P a g e

observed ACKs. The previous recipient should now

also have gathered the packets in response to the

scatter.

Now, there the case of three links fail, and a

single link connection in the network. Same

procedure adopted as shown in figure.

The direct ACK is returned to a claimer, but this

time the link is not working any longer.

The algorithm is designed so that if any other

link is still working than ACK is forwarded to that

link otherwise the ACK will have to be returned to

the link through which it came.

The signal ACK sender now train the only link

left to the processor to reach the originator.

b) Operation in the event of processor failure

The detection of processor failure is very

important to stop meaningless waiting or sending

attempts. To know the status of processor, each time

data packet and control packet is exchanged, the

update knowledge about link status of all processor

attached to the header of the packet. Each node

periodically updates the link status vectors as the

exchange of packets takes place with other nodes. A

faulty processor will be excluded from the network

during the protocol operation until it is repaired.

IV. NETWORK RELIABILITY
The probability that packet exchanges between a

pair of nodes can be conducted in the event of link

failure in the network is defined as the network

reliability cR [11]. The reliability between two nodes

of the network is employed by the very such that a

packet sent from one module with two extra ACKs.

So, that the receiver to know the packet for proper

action, thus the reliability between two modules in the

system is increased by the use of redundant

ACKs[10].

Let 1R be the reliability of a transputer link.

cR be the reliability of the connection between

two modules across a link. The probability of a

connection failure is

        2
11

2
11

2
1

2
1 11121 RRRRRRFc 

 (1)

 Equation (1) can be simplified as

     1
2

1
3

1 1211 RRRFc  (2)

So, the network reliability cR is

    1
2
1

3
1 12111 RRRRc  (3)

There are five possible routes in all possible

link failure provided that the system is still connected.

The extra ACKs scattered in response to the data

packet received, transform the transmission receiver

for active actions.

V. SYSTEM RELIABILITY
To keep the system in reliable operation mode the

following parameters are used. Let „C‟ be the

probability that the fault is detected and „r‟ be the

probability that the fault is repaired after the fault

detected in the system. „t‟ be the processing time and

„‟ be the fault rate during power on. Taking the

modular designs, the fault distribution  tRm is

exponential and identical for all modules i.e.

t
m eR  since the modules are symmetric

independent of each other except when the repair

occurs.

Let the time between the consecutive

acceptance tests  T. Where T is some constant C

and „r‟ are constants[5].

To obtain system reliability
T
cR the system

failure probability
T
c , has three components No. 1

1
1F is due to concurrent faults occur during T. No. 2

2
2F is the sequential fault occur over time t where t

>> T No. 3
3

3F results from fault repairs

corresponding to the case when faults occur in two

modules. One fault is detected when the other is not

and the undetected fault in the repairer.

    TtifRRRF mmm 









34
1 1

3

4
1

 (4)

Where 1F is the probability that all four

modules have faultsor three out of four modules have

faults during „T‟.

Putting
t

m eR  in Equation (4).

    TteeeF ttt 







   34

1 1
3

4
1

 (5)

The failure probability 2F comes from the

situation in which the system has suffered two

sequential faults. Since all modules are symmetric to

each other, so 2F is the sum of all the sequences[6].

The fault detection probability „c‟ and the probability

successful repair „4‟ can change the system failure

probability substantially, for four sequences.

    22 114 rccF 

S. S. Nayak et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 7, (Part - 2) July 2015, pp.15-22

 www.ijera.com 21 | P a g e

     
t t

t
mm R

dt

d
R

dt

d

0
21 1

11

  
t

t
mm TtifdtdtdtRR

dt

d

2

,1 123

3

 (6)

where    rcc  11 is the probability

that a fault is not detected.

Substituting
t

m eR  in (6)

      TtifeeerccF ttt    4322
2 386111

        TteerccF tt    31111
32

2

 (7)

Let 3F is the probability that faults occur on only

two modules, one of them is detected and other not

and the latter appears to have successfully repaired

the former using its runtime context[8].

    TtRRcrcF mm 







 22

3 11
2

4

3

1
2

 (8)

The system failure probability is










ttifF

TtifFF
Fc

2

311
 (9)

Thus the reliability is
T

c
T
c FR 1 .

Equation (7) reflects the contribution to the

reliability from the online forward fault repair. It

shows that higher values of the probability C or r,

lower than system failure probability[7][9].

VI. FAULT INJECTION
Several research papers have been published on

fault injection into the live systems [16][17]. Several

research groups have developed powerful tools to

inject faults by software [12],[13]. The major

advantage of simulation based fault injection[14] is

the observability of all components which have been

module. Our network system depicts a simulation

based fault injection approach as in Fig. 13. All

systems components have to be modelled in the

VHDL hardware description language[15] b using

standard synthesis tool and gate level descriptions.

Our mechanism uses extended cell library to evaluate

fault coverage and fault latency automatically.

Figure-13 Evaluation of dependability using

reliability tool

VII. CONCLUSION

The design exploits parallel processing capability

to result in improved reliability. With the mechanism

of forward fault repair and redundancy saves the cost

of accessing persistent I/O devices. The concurrency

control overhead is eliminated due to non-sharing of

virtual memory. Definitely this design is highly

efficient compared to existing configurations.

REFERENCES

[1] D. Siewiorek, and R. Swarz, “The Theory

and Practice of Reliable System Design”,

1982 by Digital Press.

[2] R. Koo and S. Toueg, “Check Pointing and

Rollback – Recovery for Distributed

Systems”, IEEE Trans on Software

Engineer, Vol. SE-13, No. 1, January 1987.

[3] R. Beton, J. Kingdon and C. Upstil, “Highly

Availability Transputing Systems”,

Proceedings of the World Transputer User

Group Conference, April 1991.

[4] F. Christian, B. Dancey and J. Dehn.,

“Understanding Fault-Tolerant Distributed

Systems”, Invited Paper, 20
th

 Annual

International Symposium on Fault-Tolerant

Computing, June 1990.

[5] K. Kim and J. Yoon, “Approaches to

Implementation of a Repairable Distributed

Recovery Block Scheme”, Ann Int. Symp.

On Fault-Tolerant Computing, 1988.

[6] O. Selin, “Fault-Tolerant Systems in

Commercial Applications”, Computer,

IEEE, August 1994.

[7] J. Ortiz, “Transputer Fault-Tolerant

Processor”, Proceedings of the Third

Conference of the North American

Transputer Users Group, 1990.

S. S. Nayak et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 7, (Part - 2) July 2015, pp.15-22

 www.ijera.com 22 | P a g e

[8] R. Oates, J. Kerridge, “Adding Fault

Tolerance to a Transputer-based Parallel

Database Machine”, Proc. Of the World

Transputer User Group Conference, 1991.

[9] R. Strom, D. Bacon, S. Yemini, “Volatile

Logging in n-Fault-tolerant Distributed

Systems”, Ann. Int. Symp. On Fault-

Tolerant Computing, 1988.

[10] Y. Chen, T. Chen, “Implementing Fault-

Tolerance via Modular Redundancy with

Comparison”, IEEE Trans. on Reliability,

Vol. 39, No. 2, June, 1990.

[11] D. Cheriton and W. Zweanepoel, “One-to-

many Interprocess Communication in the V-

System”, Report STAN-CS-84-1011,

Department of Computer Science, Standford

University, August 1984.

[12] J. Barton, E. Czeck, Z. Segall and D.

Siewiorek, “Fault Injection Experiments

using FI-AT”, IEEE TOC, Vol. 39, No. 4,

1990, pp. 575-582.

[13] J. Carreira, H. Medeira and J. G. Silva,

“Software Fault Injection and Monitoring in

Processor Function Units”, In: Preprints

DCCA-5, Dependable Computing for

Critical Applications, Urbana Champaign,

1995, pp. 135-149.

[14] E. Jenn, J. Arlat, M. Rimen, J. Ohisson and

J. Karisson, “Fault Injection into VHDL

Models: The MEFISTO Tool”, In: Proc

FTCS-24, 1994, pp. 66-75.

[15] P. Ashenden, “The VHDL – Cookbook”,

Technical Report, Univ. of Adelaide, South

Australia, 1990.

[16] R. K. Iyer, “Experimental Evaluation”, In:

Proc. FTCS-25, 1995, pp. 115-132.

[17] J. Karlsson, P. Liden, P. Dahlgren, R.

Johansson and U. Gunneflo, “Using Heavy-

ion Radiation to Validate Fault – Handling

Mechanisms”, IEEE Micro Vol. 14, No. 1,

1994, pp. 8-23.

[18] Inmos, “The Transputer Data Book”, Second

Edition, 1989.

